Contents

President's Message

History

Vision & R&D Focus

Global Research Network & Organization

Funding Source

Medical Micro/Nano Robotics

Medical Robotics

Service Robotics

Infra

President's Message

Dear partners,

Welcome to Korea Institute of Medical Microrobotics[KIMIRo] & Robot Research Initiative[RRI].

RRI was established as an affiliated organization of Chonnam National University in March 2008 with the target of advanced research and bringing up of professional resources on medical microrobotics. Based on diversified research spectrum, Medical Microrobot Center was established in 2016 with the purpose of R&D on medical microrobotics and support of related space/facility/equipments.

In the beginning of 2019, research foundation "Korea Institute of Medical Microrobotics[KIMIRo]" was founded.

The major functions of KIMIRo are as followings :

- Professional research on medical microrobotics

- Clinical GMP based prototyping for industry

- Cooperation among industry-academia-institute-hospital-government on medical microrobotics

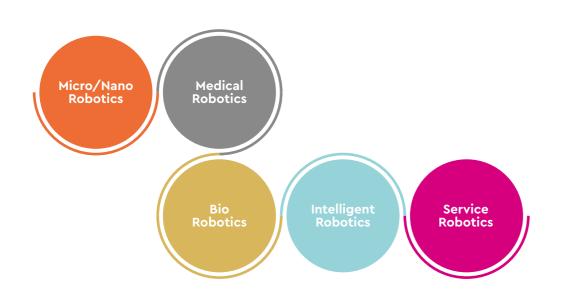
We are pursuing 'Global Leader in Medical Microrobotics' and based on it simultaneously establishment of medical microrobot industry complex.

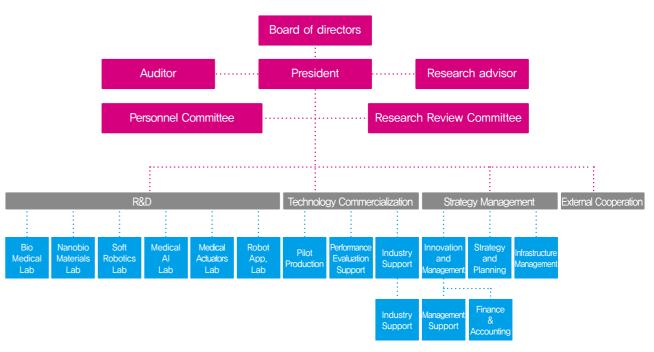
We wish to be your precious partner with your valuable comments in promising emerging field in 21C.

Thank you.

Jong-Oh Park,

President, Professor, Dr.-Ing.


History


2019. 01. 29	Opening of Korea Institute of Medical Micro
2017. 05. 17	Announcement of Stem cell-based Microrobo
2017. 04. 11	Medical Microrobot Industry Forum at Natio
2017. 03. 24	Foundation of "The second Council of Media
2016. 10. 19	Opening Ceremony of 'Medical Microrobot
2016. 07. 27	Announcement of Immune-cell based Micror
2015. 03. 31	Technology transfer of 'Active Capsule Endo
2014. 04. 07	MOU on mutual cooperation with Daewoo
2013. 12. 18	Announcement of In-vivo Test of Bacteriobot
2013. 06. 07	Cooperation Agreement with Fraunhofer-Ge
2013. 06. 07	Opening of "Joint Robotics Lab of CNU RRI
2012. 05. 09	MOU on mutual cooperation with MRSEC o
2011. 06. 21	MOU on mutual cooperation with Fondazio
2011. 03. 02	MOU on mutual cooperation with Center for Nagoya University(CMM), Japan
2010. 06. 03	Opening of 'Pioneer Research Center on Ba
2010. 05. 13	Announcement of In-vivo Test of Intravascula to the Public world first
2010. 01. 29	MOU on mutual cooperation with Fukuda La
2008. 10. 21	MOU on mutual cooperation with Sitti Lab in
2008. 10. 20	MOU on mutual cooperation with Biorobotic Scuola Superiore Sant'Anna, Italy
2008. 10. 15	RRI hosted "The 39th International Symposiu
2008.06.04	RRI was selected as CNU-XRC by Chonnam
2008. 04. 23	Prof.DrIng. Jong-oh Park was nominated as

History

orobotics pot world first onal Assembly lical Microrobot Industry" ot Center' robot world first oscope' to Wooyoung Medical Shipbuilding & Marine Engineering, Korea as the world first Biomedical Nanorobot esellschaft and Fraunhofer-IPA, Germany in collaboration with Fraunhofer IPA" of Brandeis University, USA one Istituto Italiano di Tecnologia(IIT), Italy or Micro-Nano Mechatronics, acteriobot ar Therapeutic Microrobot ab in Nagoya Univ. Japan in Carnegie Mellon Univ. USA tics Institute in ium on Robotics" National University is the Founding Director of RRI

Global Research Network & Organization

Funding Source

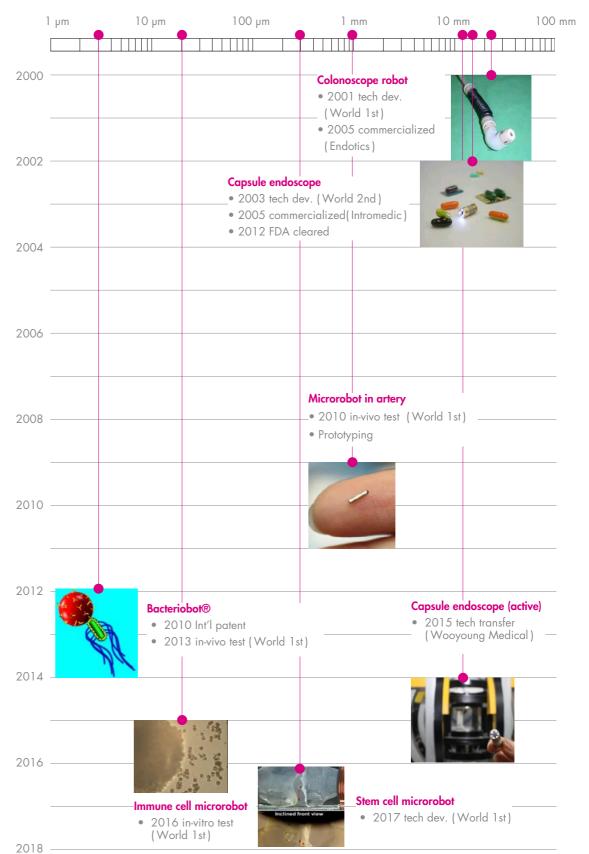
Funding Source

Title	Period	Budget(M\$)	Sponsor	Achievements
Intelligent Microsystem Program (21C Frontier Program)	1999 - 2004	32	Ministry of Science	Colonoscope robot Capsule endoscope Micro PDA
Development of Intravascular Microrobot	2007 - 2014	13	Ministry of Industry	Microrobot in artery
Development of Image-guided Surgery Robot	2008 - 2013	2.5	Ministry of Industry	Brain surgery robot
Pioneer Research Center "Bacteriobot"	2009 - 2015	6.0	Ministry of Science	Bacteriobot
Nuclear Energy Research Infrastructure Program (KIRAMS)	2011 - 2016	0.4	Ministry of Science	Couch robot for heavy ion therapy
Industrial Strategic Tech. Development Program (HHI)	2012 - 2017	1.3	Ministry of Industry	Hybrid control for bone-fracture reduction robot
Leading Foreign Research Institutes Recruitment Program	2012 - 2018	6.0	Ministry of Science	Joint Robotics Lab of CNU in collaboration with Fraunhofer IPA Cable robotics
Establishment of Medical Microrobot Center	2013 - 2018	34	Ministry of Industry	Headquarter of medical microrobot industry
Next-generation Medical Device Development Program	2015 - 2018	1.8	Ministry of Science	Active capsule endoscope
Industrial Technology Innovation Program	2015 - 2020	4.5	Ministry of Industry	Locomotion and targeting of medical nanorobotics
Biomedical Technology Innovation Program	2016 - 2022	2.4	Ministry of Science	Stem-cell based microrobot for precise targeting
R&D Center for Practical Medical Microrobot Platform	2019 - 2022	22.9	Ministry of Health and welfare	

Medical Micro / Nano **Robotics**

From cm up to nm scale

from integrated system up to cell

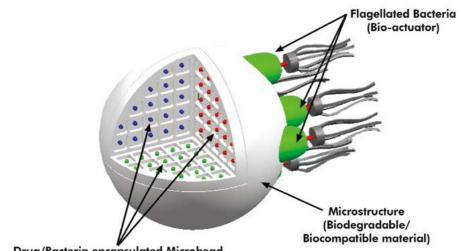

... toward **Miniaturization of Medical Robots**

- 21C is the era of Genetics, Nanotechnology and Robotics
- Micro/Nano Robotics = Genetics + Nanotechnology + Robotics
- Human body is characterized as Nanobio Cluster
- Reference model in different robot size

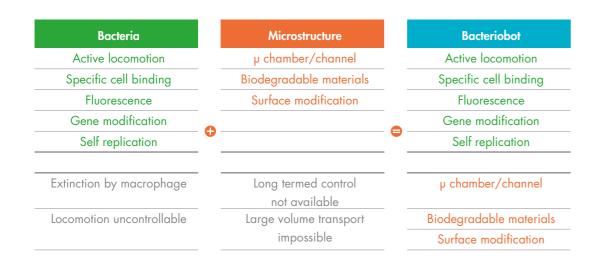
Robot Size	Reference Model		
m - scale	Human/Animal		
cm - scale	Insect		
less than 1mm	Bacteria		
less than 1 µm	Virus		

"Intelligent Microsystem Program" as one of the 21C Frontier R&D programs has been the momentum to develop the microrobots, for instance, colonoscope robot as well as capsule endoscope robot since the beginning of 2000, where RRI staff played the leading role in this challenging program at KIST. On the base of successful results and experiences, further researches have been initiated, such as Intravascular microrobot, active capsule endoscope and cell-based micro/nanorobot including bacteriobot, immune cell-based microrobot, and stem cell-based microrobot and so on.

KIMIRo / RRI Competence in Micro / Nano Robotics


nm robot : **Bacteria-based Biomedical Nanorobot**

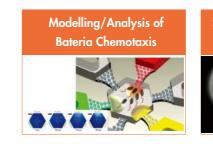
[Int. Patent registered in 2013]


Technical Overview

Development of the intelligent theragnostic bacteria-based biomedical nanorobot technology for fusion of the fundamental technology and acquirement of the fundamental patent

Bacteriobot speed	100 µm/min		
Bacteriobot size	3 µm		
Target disease	Solid tumor (Colon cancer, Breast cancer)		

Drug/Bacteria encapsulated Microbead (Anti-cancer drug/Therapeutic bacteria)


Research Topics

Tumor Targeting Bacteriobot

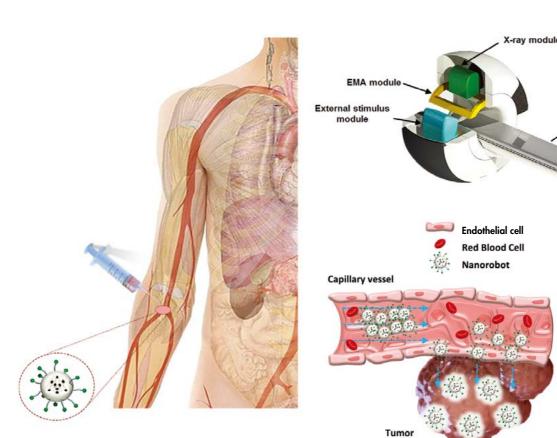
Achievement

- New microrobot paradigm
- Bacteria act as microactuators/microsensors
- New fundamental methodology using biomedical microrobot - Diagnosis and therapy of solid tumors

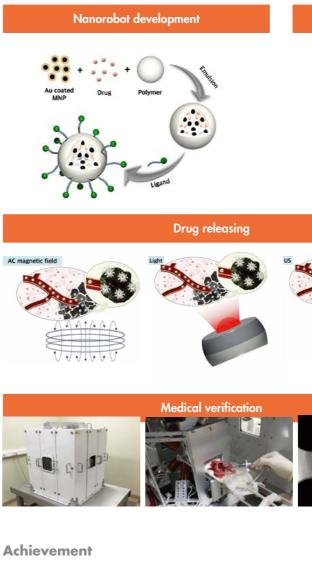
Application Area

- New biological actuator of biomedical microrobot
- Active DDS (Overcome the toxicity and drug resistance)
- Affordable medical equipment (Diagnosis and therapy at the same time)

Medical Micro / Nano Robotics



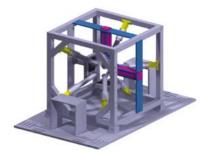
nm robot : Nanorobot for Precise Targeting and **Controlled Releasing of Drugs**


Technical Overview

Polymer-based nanorobots which are loaded with anticancer drugs actively transfer to solid tumors (liver cancers) and give high targeting performance, and drug release is triggered by remote stimulation around cancer cells.

100 nm (single part)		
< ±1°		
> 86 %		
> 8 %/min		
Solid tumor (Liver cancer)		

Research Topics

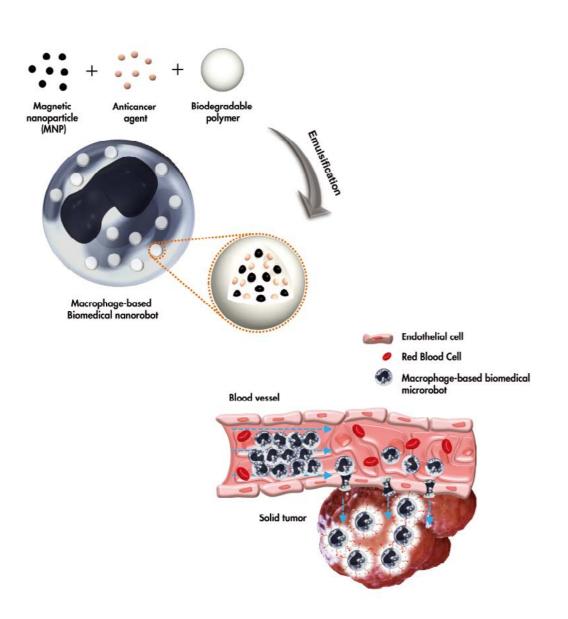

- The first national project in 'Nanorobotics' field
- The world's smallest medical remote controlled robot

Application Area

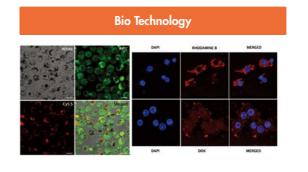
- Combined therapy: Photodynamic or high intensity focused ultrasound therapy with enhanced permeability and retention effect for chemical therapy
- Active DDS (Overcome toxicity and drug resistance)
- Nanomedicine the medical application of nanotechnology

Medical Micro/Nano Robotics

Actuator development

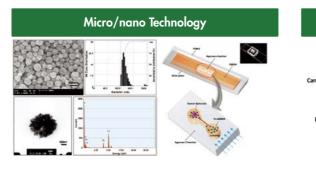


μ **m robot :** Macrophage-based **Biomedical Microrobot**


Technical Overview

Development of active transportable and cancer theragnostic macrophage-based microrobot technology for advanced and synergetic immune therapy for incurable disease

Microrobot speed	40 µm/sec			
Microrobot size	10 ~ 20 µm			
Target disease	Solid tumor (Colon cancer, Breast cancer)			



Research Topics

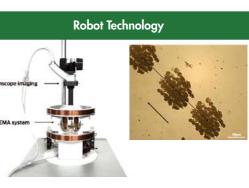
• Manipulation of immune cells

- Fabrication of cell-based robot
- Live cell imaging

- Biocompatible nanoparticles • Nanostructure for Drug delivery
- Microfluidic Channel

Achievement

- The world's first immune cell-based medical microrobot
- Hybrid actuating and Active therapy by immune cell
- Advanced therapeutical method for cancer - Chemotherapy & Immunotherapy


Application Area

- Evolved cell-based biomedical microrobot
- New Express DDS (Quick & Precise drug delivery)
- Complex DDS (Immunity and synthetic drug)
- Trojan horse method for attacking incurable diseases

Medical Micro/Nano Robotics

• Tumor mimic environment In-vitro tumor therapy • In-vivo tumor therapy

• Electromagnetic actuation system • External cellular actuation • Control of moving direction

μ **m robot :** Stem Cell-based **Biomedical Microrobot**

Technical Overview

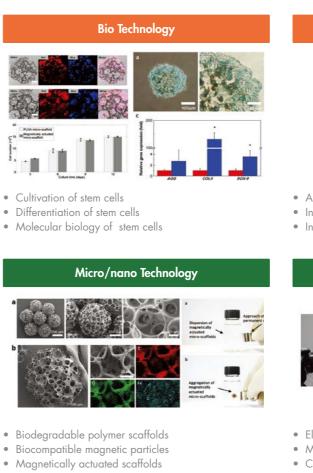
Articular

cartilage

Development of magnetic actuating stem cell-based microrobot technology for convergence of BT, NT, RT and mesenchymal stem cell (MSC) delivery for articular cartilage regeneration

Microrobot speed	40 µm/sec		
Microrobot size	300 ~ 800 μm		
Target disease	Osteoarthritis		

synovial fluid


Tibia

magnetic nanoparticles Joint capsule

Magnetic field

control

Research Topics

Achievement

- Active and targeted stem cell delivery for cartilage regeneration - Quick and precise location controlling of stem cells
- Advanced therapeutical method for articular cartilage repair
- Mass fresh stem cells and optimized differentiation

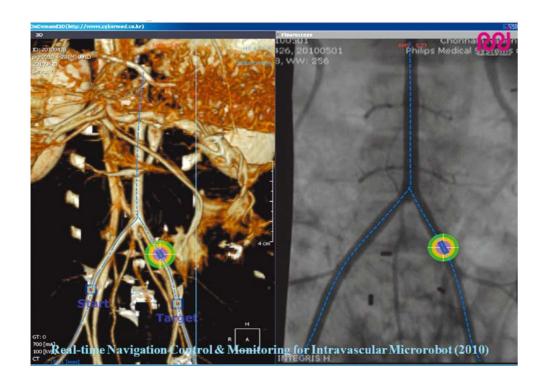
Application Area

- Stem cell-based biomedical microrobots for incurable diseases and joints
- New Express stem cell delivery (Quick & precise stem cell delivery)
- Complex cell delivery system (stem cells and drugs)

Medical Micro/Nano Robotics

Medical Technology

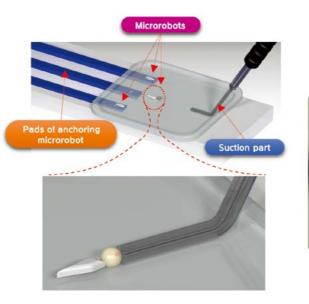
• Articular cartilage mimic environment • In-vitro cartilage regeneration assay • In-vivo cartilage regeneration assay


Robot Technology

• Electromagnetic actuation system • Magnetic actuation of scaffolds • Control of moving direction

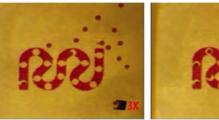
μm robot : Intravascular Therapeutic Microrobot

[World 1st Success in In-vivo Test, 2010]



μm robot : Microrobot for Cell Manipulation

Technical Overview


Cell manipulation using electromagnetic actuated microrobot such as cell sorting, dead cell removal, and cell assembly

Size	1000 µm width
Fabrication method	Mici
Material	Mixture using
Function	Cell or micro-

Application Area

- Cell manipulation such as cell sorting, dead cell removal, and cell assembly
- In High skilled work, like ICSI (Intracytoplasmic Sperm Injection), pronucleus DNA injection,

Initial state

Final state

Medical Micro/Nano Robotics

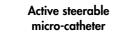
n, 1000 µm length, 50 µm height

cro-molding technique

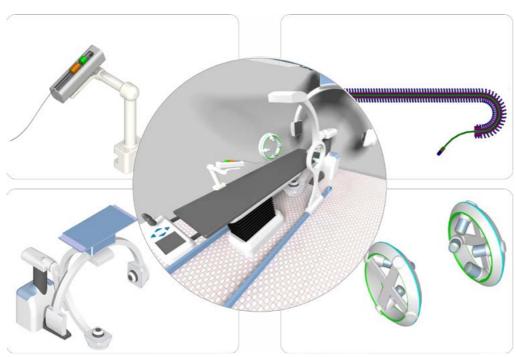
ng permanent magnet powder

p-particle assembly, sorting cell

noval, and cell assembly erm Injection), pronucleus DNA injection,



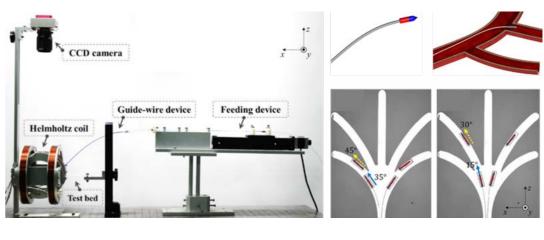
mm robot : **Robotic Catheter System**


Technical Overview

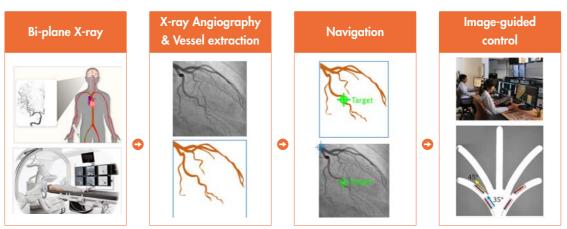
Robotic micro-catheter system for drug/stent delivery and treatment of coronary artery disease such as chronic total occlusion and thrombosis

Size	2.4Fr (0.8 mm) or less		
DOF	4 DOF or over		
Steering Accuracy	below 1.0°		
Steering Method	Electromagnetic field		

Control platform



Electromagnetic actuation system


Imaging Platform

Research Topics

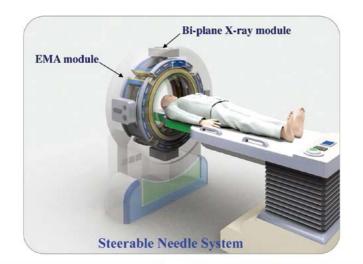
• Steering mechanism and control of micro-catheter

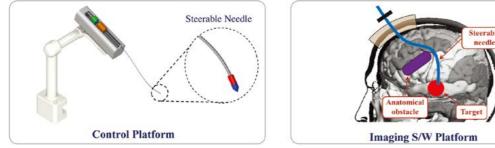
Imaging system & navigation S/W

• Medical treatment & clinical validation

Application Area

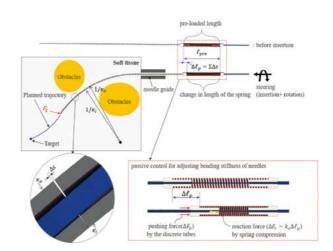
- Drug/stent delivery, Diagnosis and treatment for coronary artery disease
- Disease in spine, brain and liver

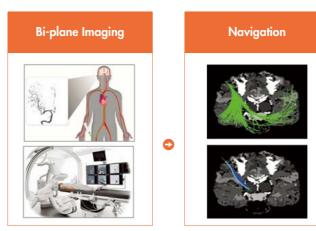

Medical Micro/Nano Robotics


mm robot : Steerable Needle System

Technical Overview

Steerable needle system improves patient care for a variety of diagnostic and therapeutic medical procedures. Steerable needle tip can be precisely reached to a lesion while avoiding complex-shaped risk areas such as a nerve and a blood vessel.

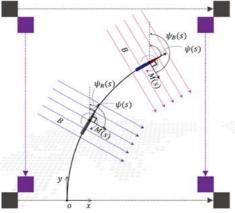

Size	19 G (1mm) or less		
DOF	4 DOF or over		
Steering Accuracy	below 1.0°		
Steering Method	Electromagnetic field		



Research Topics

• Steerable needle mechanism and electromagnetic control

• Imaging system & navigation S/W



• Medical treatment & clinical validation

Application Area

- Deep brain stimulation, tissue biopsies, tumor ablation, and cancer treatments
- Disease in the brain, liver, lung, abdominal and pelvic cavity

Medical Micro/Nano Robotics

Medical Micro/Nano Robotics

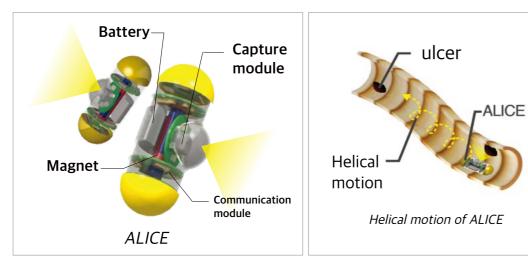
mm robot : Capsule Endoscope robot "MiRO"

World 2nd Success in Development & Commercialization, 2003/2005

cm robot : **Colonoscope Robot**

World 1st Success in Cadaver Test & Commercialization, 2001/2005

Medical Micro/Nano Robotics


mm robot : ALICE

(Active Locomotive Intestinal Capsule Endoscope)

Technical Overview

Capsule endoscope (C.E.) movement through the digestive organ for diagnosis of diseases

Existing C.E.	Contents	Active C.E.	
Passive locomotion by peristaltic motion	Diagnosis	Active locomotion by medical personnel	
12 ~ 24 hours	required time	10 ~ 20 min	
Small intestine	Organs	Whole digestive organs	
Image capture	Function	Image Capture, Biopsy, Tattooing, Maneuvering	

H/W Platform

Position display

Research Topics

• Treatment of biopsy sample • Bio-compatible material • Bio-reagent for diagnosis

Medical Technology

- Micro medical device
- Development of medical device

- Analysis for maneuvering and diagnosis

Application Area

- Diagnosis and treatment for diseases of digestive organs
- Cancer, polyps, bleeding, ulcer

Medical Micro/Nano Robotics

Micro/Nano Technology

• Medical Micro/Nano Device

- Biopsy Tool, Drug Delivery Tool
- Micro/Nano Fabrication

• Localization and posture awareness • Control of position and posture

Medical Robotics

Highest value-added surgery robotics using AI, VR/AR, sensor and modeling

Image-guided **Brain Surgery Robot**

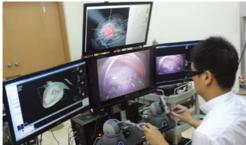
Technical Overview

- Multi-articulated manipulator for single-port brain surgery
- Master and slave system with force reflection control to overcome the limitation of operating range of instruments
- Image-guided surgery robot system using 3D reconstruction, vision and AR(Augmented Reality)

Tele-Surgical Master-Slave

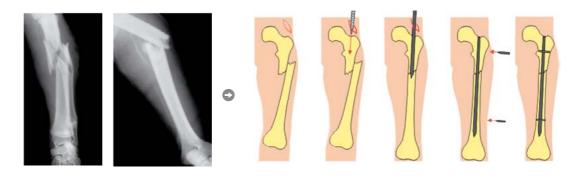
Research Topics

2EA End-effectors / 3D Stereo-endoscope



Single-port Robotic Manipulator System

Application Area



- The endoscopic endonasal approach to skull base surgery (General Surgery, Neurosurgery, Otolaryngology)
- Surgical procedures that require microsurgery and robotic surgery
- Elaborate surgery by image-guided surgery

Interactive & Remote Control for Bone-fracture Reduction Robot (Principal Investigator : Hyundai Heavy Industry)

Technical Overview

Modern orthopedic surgical operation is actively attempting to employ invisible operations to minimize incision. The main difficulties in this surgery are radiation exposure and heavy load to align. This project suggests a robotic assistant and a navigation system. The robot-assisted surgical system will contribute to increasing the accuracy of surgery.

- Next generation remote control (Hybrid control)
- Required technologies
- Tele-operation
- Interactive / Remote mode control
- Virtual Reality / Augmented Reality
- Force Reflection
- Haptics / Master part design
- Navigation System Integration
- 2D/3D Registration

Robotic Bed System for Heavy Ion Therapy

Research Topics

Interaction between surgeon and robot is applicable in two modes: interactive control mode and remote control mode [robot(HHI), Jig(KPU Hospital)]

Interactive control

Remote control

Interactive mode allows a surgeon to operate the robot motion directly without significant load

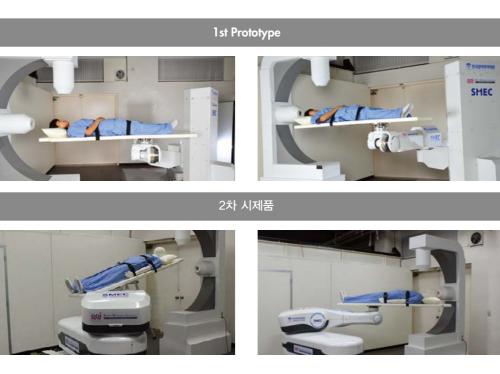
Surgeons can control the robot motion through remote mode over the lead glass wall

Navigation system

A navigation system can show status of bone and various information in real time without x-ray shootings

Technical Overview

- Development of robotic patient positioning system to align lesion's position to a specific iso-center
- Achieving position accuracy less than 1 mm for brain / 3 mm for body

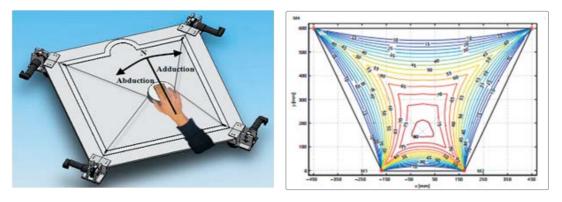

Robot Specification

Number of Axis		6	Maximum Payload		150 kg
Position Repeatability		±0.02 mm			
	Axis 1	±180 °	Maximum Speed	Axis 1	40 °/s
	Axis 2 Motion Axis 3	±165°		Axis 2	60 °/s
Motion		-30~+20°		Axis 3	40 °/s
Range	Axis 4	±250 °		Axis 4	50 °/s
	Axis 5	-22 ~ +35 °		Axis 5	50 °/s
	Axis 6	±160 °		Axis 6	50 °/s

Rehabilitation **Parallel Cable Robotics**

Research Topics

Treatment Specification			
Patient Loading Height	650 mm	Maximum Patient Weight	130 kg

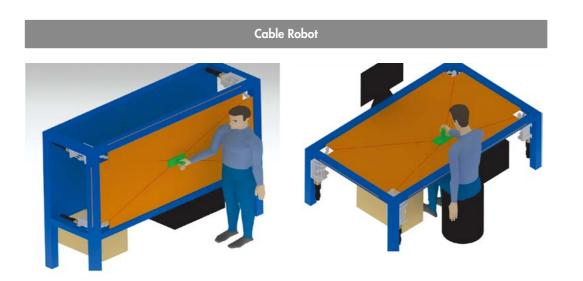

Treatment Volume					
	Longitudinal	1,000 mm		Axial (Roll)	±15°
Linear Movement	Lateral	±240 mm	Rotational Movement	Sagittal (Pitch)	±15°
	Vertical	400 mm		Coronal (Yaw)	±90°

Application Area

- Precise position control for respiratory motion and deformation of treatment couch due to patient weight
- Essential medical apparatus for a non-invasive surgery
- Useful solution for various surgery robots, therapeutic and diagnostic equipment
- The commercialized system was sold to Shanghai Institute of Applied Physics Chinese Academy of Science(SINAP)

Technical Overview

Development of fundamental researches for a rehabilitation parallel cable robotic system. The cable-driven philosophy makes the robot intrinsically safe, much lighter and less cumbersome.



Research work includes design of winch system, forward/inverse kinematics, dynamics analysis, force distribution algorithm, Image Guided System and so forth.

Research Topics & Application Area

Cable robot therapy will be used in partial substitution of conventional upper-limb rehabilitation of acute stroke patients.

Service **Robotics**

Professional service robotics incl. cable robotics and beyond


High Dynamic Parallel Cable Robot

High Payload Cable Robot

Technical Overview

- Development of high payload robot with large workspace
- Achieving high payload transfer and assembly handling heavy parts of over 200kg

Performance Objectives			
Size	$7 \times 7 \times 5 \text{ m}^3$	Payload	200 kg
DOFs	> 3	Max. velocity	1 m/s

Research Topics & Application Area

- Cable length control considering high payload and cable dynamics
- Nonlinear cable modeling and robust tension control
- Large workspace operations for high payload transfer and assembly

High Speed Cable Robot

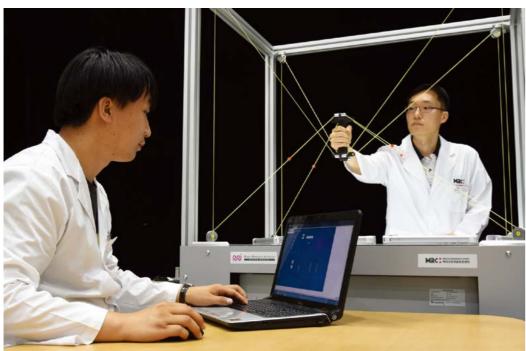
Technical Overview

- Development of industrial high-speed pick and place robot with large workspace
- Achieving pick and place cycle time of 0.4sec (handling speed of 150parts/min with 1kg payload)

Performance Objectives			
Size	$2m \times 2m \times 2m$	Max. velocity	10 m/s
DOFs	6	Max. acceleration	100 m/s ²
Cycle time	0.4 sec	Max. cycle velocity	3 m/s
Payload	1 kg	Max. cycle acceleration	50 m/s ²

Research Topics & Application Area

- Reduction of vibration by high inertial forces and cable dynamics
- Nonlinear cable modeling and collision with objects inside workspace
- Industrial large workspace operations for sorting and transferring small parts


Service Robotics

Mini Cable Robot

Technical Overview

- Compact test bed capable of 6 DOFs motions
- Feasibility tests for diverse applications
- Demonstration of a parallel cable robot

Robot Specifications				
Size	Full	1.4m × 1m × 2m	Max. cable tension	50 N
	Workspace	1m × 0.9m × 0.7m	Max. cable velocity	2 m/s
	DOFs	6	Number of cables	8
Controller		Built-in IPC	Cable diameter	2 mm

Application Area

- 6DOFs Haptic interface for manipulating a cable robot
- Rehabilitation device

Infra

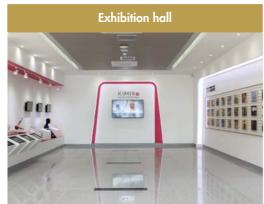
World's best infrastructure & global collaboration

Korea Institute of **Medical Microrobotics**

Facilities

Main building (4103.8 m²)

- 4F Conference room & Administration
- 3F Industry complex
- 2F Auditorium, R&D Support Lab
- 1F Medical robotics Lab, Micro/nanorobot prototyping Lab, Exhibition hall


Annex (1869.6 m²)

- 2F Animal Research Lab, Biomedical Lab
- 1F Microrobot Fab

Research Equipments

- Equipment for prototyping
- Equipment for experiment, analysis, and performance evaluation
- Equipment for preclinical and clinical evaluation



Infra



R&D Support for SMEs

Purpose

To provide excellent human resources and equipment of KIMIRo to enable SMEs to grow into global champions on the basis of technology power with R&D support

Overview

Product development phase	Prototyping & production supportResolution of technical difficulties
Advancement phase	technology consulttest bed, certification support
Commercialization phase	Commercialization and HR supportBoost corporate growth model

Detail

Prototyping & production support Providing max 50M KW for medical device/robot SMEs to commercialize

Technical seminar & Education program To strengthen technological capability and professionalism

Resolution of

technical difficulties Dispatch of competent workforce to resolve technical issues

Network

Support SMEs to say competitive by building a diverse network of Medical microrobot industry association

investigation and prototype fabrication

One-stop service offering test,

Equipment service

Industry complex service

Providing core technology of MRC for technology entrepreneurs